Dodatkowo związek zawiera fragment charakterystyczny dla imin wiązanie $\mathrm{C}=\mathrm{N}$ (5).

Bitrex
Odejmując od wzoru sumarycznego związku podany wzór anionu, otrzymujemy wzór sumaryczny kationu: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+}$. Przedstawiony na rysunku 16 podstawnik ma wzór sumaryczny $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}$ i jest jedną z 4 grup przyłączonych do atomu azotu, zatem na 3 pozostałe grupy przypada 11 atomów węgla i 17 atomów wodoru. Jedna z tych grup, zgodnie z opisem, zawiera niepodstawiony pierścień benzenowy przyłączony przez jednowęglowy fragment, czyli zawiera 7 atomów węgla i 7 atomów wodoru ($\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-$, podstawnik benzylowy). Zostają 4 atomy węgla i 10 atomów wodoru, które rozdzielamy po połowie między dwa podstawniki ($\mathrm{C}_{2} \mathrm{H}_{5}$ - grupy etylowe). Wzór kationu przedstawiono na rysunku 52.

Rys. 52. Kation amoniowy wchodzący w skład Bitrexu

Hybrydyzację $s p^{2}$ mają wszystkie atomy węgla pierścieni benzenowych, a także atomy węgla związane wiązaniami podwójnymi z atomami tlenu (grupy karbonylowa lub karboksylowa) bądź azotu. Hybrydyzację sp jedynie atom węgla związany wiązaniem potrójnym z atomem azotu w grupie nitrylowej w pierwszym związku. Pozostałe atomy węgla, z 4 wiązaniami pojedynczymi, mają hybrydyzację $s p^{3}$ - jest ich 11 (3 w pierwszym, 8-w drugim związku).

Pary wyrazów stanowiące dodatkowe rozwiązanie są następujące:

Ostatnim słowem może być także „poakcja", natomiast nie „trakcja" (nie ma pierwiastka o symbolu Tr).
9.7. Związek \mathbf{X} to tlenosiarczek węgla COS, \mathbf{Y} to $\mathrm{CO}_{2}, \mathbf{Z}$ to $\mathrm{SO}_{2}, \mathbf{V}-\mathrm{H}_{2} \mathrm{~S}$.

Rozwiązanie dobrze jest zacząć od identyfikacji związku X. Warto wypisać schematy (na razie niezbilansowane) reakcji, w których występuje:
$\mathbf{X}+\mathrm{O}_{2} \rightarrow \mathbf{Y}+\mathbf{Z}$
$\mathbf{X}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{Y}+\mathbf{V}$
$X+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathbf{Y}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{KSCN}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KHSO}_{4}+\mathbf{A}\left(\mathrm{HSO}_{4}\right)_{n}+\mathbf{X}$

